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An exact equation governing the transport of energy associated with disturbances in 
an arbitrary steady flow is derived. The result is a generalization of the familiar 
concept of acoustic energy and is suggested by a perturbation expansion of the 
general energy equation of fluid mechanics. A disturbance energy density and flux 
are defined and identified as exact fluid dynamic quantities whose leading-order 
regular perturbation representations reduce in various special cases to previously 
known results. The exact equation on disturbance energy is applied to a simple 
example of nonlinear wave propagation as an illustration of its general utility in 
situations where a linear description of the disturbance is inadequate. 

1. Introduction 
Suitable measures of the energy associated with disturbances to a given flow have 

been the subject of considerable interest and debate for many years. Expressions for 
energy are necessarily of second degree in the dependent variables which describe a 
disturbance, but if that disturbance is treated according to a first-order approximate 
theory, for example, then any useful measure of energy must contain only first-order 
approximations as well. Particularly in linear acoustics, questions about the order 
consistency of the commonly defined acoustic energy density and flux and their 
relationship to the general principle of energy conservation continue to arise. Such 
considerations are of obvious theoretical interest ; in acoustics they stem also from a 
practical need to explore the possibility of making direct measurements of acoustic 
power transmission in complicated background flows. As indicated, the concepts to 
be discussed here have perhaps received most attention in the study of sound 
propagation, and it was in this context that the author originally approached the 
subject. Thus, some of the following is presented from an acoustic point of view. 
It is emphasized, however, that the results to be developed have application to 
any fluid mechanical situation in which attention is directed to the behaviour 
of disturbances propagating in a known basic flow. Hence, with appropriate 
specialization of fluid properties and flow characteristics, and proper choice of frame 
of reference, they apply to problems of steady and unsteady aerodynamics, stability, 
turbulence, and so on. 

Although no detailed review of previous work on the subject will be attempted 
here, there are certain sources which bear directly on the present paper. Perhaps the 
best known early discussion in the acoustic literature of energy in moving media is 
that of Cantrell & Hart (1964), who considered homentropic, irrotational flow. 
Previously, Blokhintsev (1956) developed similar ideas in the high-frequency context 
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of geometric acoustic theory. The work of Morfey (1971) seems to be the first 
comprehensive analysis of the energetics of disturbances to general fluid flows, and 
included there is an extensive bibliography of prior discussions of acoustic energy 
relations. Of course, the fundamental significance of acoustic energy in a quiescent 
uniform medium has been appreciated since the time of Rayleigh ; a clear modern 
exposition is given by Lighthill (1978), who also points out the unnacceptibility of 
basing the definition of acoustic energy on time-averaging of fluctuating quantities. 
Nevertheless, it is an indication of the troublesome nature of the subject that debate 
can still be generated about even the simplest classical case (Chu & Apfel 1983). An 
important source, which is also a valuable guide to thc earlier literature, is the 
textbook by Pierce (1981). Pierce develops, both in the text and in the exercises, a 
sequence of energy corollaries applicable to increasingly more general mean states. 

The point of view taken in the present discussion differs from that represented by 
the sources cited above. They proceed, as do virtually all similar analyscs known to 
the author, from the premise that disturbances to  a flow are of sufficiently small 
magnitude and are otherwise suitably well behaved that thcy can be represented by 
a regular perturbation expansion in which the leading approximation is described by 
a linearized theory. In  any physical problem, however, such a description is likcly not 
to be uniformly valid. As an example, onc can point to the fact that  propagation of 
sound through a flow region where the Mach number is near unity in an inherently 
nonlinear phenomenon and that linear acoustic theory is a singular perturbation in 
this circumstance. A convenient means of accounting for the transport of cnergy 
through such a region can often be of great value in view of the fact that losses occur 
because of the development of shocks in the perturbation field. This cannot be 
accomplished, however, using linear measures of energy density and flux, which are 
meaningless. As a result, another fundamental question arises which is, in essence, 
the topic of the current paper. Specifically, it becomes of major interest to determine 
precisely what exact fluid dynamic quantities are represented in the linear 
approximation by various commonly accepted expressions for energy density and 
flux. In the following, an answer to this question is deduced through the derivation 
of an exact energy corollary applicable to arbitrary disturbances in an arbitrary 
steady flow. The corollary is constructed so as to  be a complete, consistent 
representation of the principle of conservation of total fluid energy and so that it has 
a leading-order representation in a regular perturbation scheme which is identical, in 
the relevant special cases, to those mentioned above. Because it is completely 
general, however, i t  is a straightforward matter to determine the form it assumes 
under any approximation scheme appropriate to a given physical problem. The 
author has given greatly restricted versions of the present analysis previously in 
studies of sound transmitted through a near-sonic duct throat (Myers 1981 ; Myers 
& Callegari 1982) and for homentropic ideal flow (Myers 19863), and a preliminary 
form of some of the following was laid out in Myers (1986a). A simple nonlinear 
problem is treated briefly in the last section of the present paper as an application 
of the general rcsult developed. 

2. Formulation 

forces can be written in Cartesian coordinates as 
The set of equations governing the motion of a real fluid in the absence of body 
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in which p is the density, the uj are the components of the velocity vector U, p is the 
thermodynamic pressure and s is the specific entropy. On the right-hand side of ( l ) ,  

denotes the components of the viscous stress tensor, @ is the dissipation function 
P,iauj/i3xi, T is the absolute temperature and the pi are the components of the heat 
flux vector. In  addition, the present analysis will utilize three well-known 
thermodynamic relations (see e.g. Landau & Lifshitz 1959) : 

de = Tds+,dp, P d p  = - c2pPTds+c2dp, d T  = -ds+-dp. T PT (2a-c) 
P CP c p  PCP 

Here e is the specific internal energy, c is the speed of sound, c p  is the specific heat 
at constant pressure and /3 is the coefficient of thermal expansion, ( -i3p/pi3T)p. 

For purposes of algebraic simplicity in the following, it is convenient to rewrite the 
system (l) ,  expressing it in vector notation. Use relation (2a)  to write (Vp)/p = 
Vh-TVs,  where h is the specific enthalpy e+p/p. Upon use of a familiar vector 
identity, the convective acceleration in (ib) can be written V($’)+< x U, where 5 is 
the vorticity V x u. Now define vectors 6 and yt such that 6 = 6 x u  and ej = 
(l/p)(i3ej/Clxi), and let (@-V.q)/T = Q .  Then ( 1 )  assumes the form 

aP 
at 
- + V . m  = 0, 

In  (3), H is the specific stagnation enthalpy h+&2, m is the mass flux vector pu and 
( 3 c )  has been obtained by multiplying ( 1  c) by p and using (1 a) .  The system (3) will 
be taken as the fundamental working equations in what follows. It can be completed 
by specification of state equations giving h and T as functions of p and s. 

For reasons that will become clear later, some of the present analysis will be 
carried out quite formally by representing each fluid quantity q(x , t )  in the form 

in which S is a small parameter which measures the order of magnitude of unsteady 
disturbances to a basic steady flow qo(x). Substituting the expansions (4) into (3) and 
equating coefficients of like powers of S to zero independently then leads to a 
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sequence of systems of cquations which govern the nth-order fluid quantities. The 

(5a) 
first three of these are V . m o  = 0, 

(56) 
V - ( m o s o )  = Q0; ( 5 c )  

at 

To + V H o  - To Vso = ~ 0 ,  

- + V - m ,  aP1 = 0, 

%+cl +vH,-  T,VS,  - T~ vs, = Vl,  

aP2 - + V . m 2  = 0, 

(Gb) 

(6c) 

(7a)  

at 

a - (posl +p l  so) + V. (mosl +ml  so) = Q,  ; at 

at 

au2 - + ~ 2 + V H 2 - ~ V ~ ~ , - T l V ~ ~ l - T 2 V ~ o  = r2, (7b )  
at 

(7 c)  
a 
at 
- (PO 8 2  +pi 81 +pZ so) + V .  (mo 8 2  +mi $1 + m2so) = Q 2 -  

Now, to simpify writing some of the relations which occur later it is useful to define 
the left-hand sides of the continuity, linear momentum and entropy equations in (3) 
as G, L and S, respectively, with corresponding definitions C,, L,  and S, used for (5), 
(6) and (7) .  Thus (3) is abbreviated as 

and each of (5),  (6) and (7)  is 

for n = 0, 1,  2.  
To complete the nth-order systems above requires corresponding expansions of the 

thermodynamic quantities h and T.  Actually, the explicit form of T is not required 
in the following, but it will be necessary to utilize expansions of pe and p .  These can 
all be derived by first expanding each as power series in p -po and s - so. For example, 

C = O ,  L - w = 0 ,  S-Q=O, (8a-4 

c, = 0, L, -V ,  = 0, S,-Q, = 0, (9a-c) 

a2(Pe) (P-P0l2 (s-so)+- ~ 

aP2 0 2 
p e  = poco+- 

Use of (2) allows the required derivatives in (10) to be evaluated. Thus, 

Then, after substitution of the expansions (4) for p and s, equation (10) becomes 

Pe = Po eo + w o  PI +PO To 81) 

+ s2 (hop2 +PO T,  s2 +pl  T, s1 +%+- p"T"s:)+O(s". (12) 
2 P o 4  2 c p ,  
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The same procedure yields h and p in the form 

h = ho+6 ~ + ~ s l  +O(S2), to 1 
P = Po++P,+ Po 4 P o  To81 ) + O(62). 

cPO 

In  deriving the expression for (pe), in (12) and for h, in (13) the expression for p ,  in 
terms of p1 and s1 from (14) has been used. In  each of these expansions the subscript 
0 in the coefficients indicates values in the unperturbed state qo(x). 

It is appropriate to  note before going further that the above process of successive 
approximation is not new and has been utilized, sometimes less formally, by many 
earlier authors to arrive at various forms of the system (7) .  That system governs 
second-order corrections to  the linearized theory embodied in the system (6). In 
acoustics, for example, such corrections have been the subject of many important 
publications during the past several decades which form the basis of our 
understanding of phenomena such as acoustic radiation pressure and steady 
streaming (see e.g. Eckart 1948). Although many are not directly relevant. to  the 
present analysis, some have treated higher-order acoustic behaviour in terms of 
energy considerations. Readers new to these topics may wish to consult the many 
sources cited in Morfey (1971) and Pierce (1981). 

Now, the system of equations (6) along with the expression for h, from (13) and a 
corresponding expression for as a function of p1 and s1 constitute a complete 
formulation of the linearized theory of small perturbations around a general steady 
flow satisfying the system ( 5 ) .  It is seen that by developing the theory in the above 
manner no explicit use has been made of the general equation which expresses the 
principle of conservation of total fluid energy ; i t  has been replaced by its equivalent 
in terms of entropy, equation (1 c). It is well known, however, that  the system (6) can 
be manipulated algebraically in numerous special cases to derive relations which 
apparently express some version of the energy principle. For example, for 
homentropic irrotational flow of a perfect fluid one can show that (6) lead to  an 
energy corollary of the form 

3% -+v. W, = 0 
at 

in which the energy density E, is given by 

and the energy flux vector W, is 

K = (P ,  +PO uo’ul) ( u, +p’uo). 
Po 

W, in (17) is the ‘acoustic’ energy flux first defined (in time-averaged form with 
p, = p,/c:) by Cantrell & Hart (1964). The utility of a result such as (15) lies in the 
fact that it expresses what is fundamentally a second-order balance of energy but it 
involves only first-order perturbation quantities. 

As mentioned earlier, relations such as (15) have been derived and debated in 
many different contexts for some time. Of particular concern when they are produced 
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simply by algebraic manipulation of the linear system (6) is the question of how they 
relate to  the general energy principle and to what order of approximation they 
represent it. Of course, for the special case cited abovc, if u, = 0 and if the other 
zeroth-order quantities are constants, there is no real difficult,y (see e.g. Lighthill 
1978). The picture becomes much more clouded, howcver, when the basic state 
involves a fluid in motion. In the following section, a first-order result corresponding 
to (15) will be deduced directly from a formal expansion of the general energy 
equation for the fluid. While this approach is somewhat more cumbersome than the 
customary procedure of algebraic combination of the equations of the linear system 
(6), it does lead to  a very general result which does not appear to have been given 
elsewhere. The primary motivation for the analysis, however, is that it provides a 
clear demonstration of the relation between energy corollaries such as (15) and the 
general energy equation and of their order consistency with it. Just  as important is 
the fact that the specific details of the analysis suggest the generalization which is the 
major result of the current paper. 

3. First-order energy corollary 
The general energy equation, which reflects the fact that total fluid 'energy 

(internal plus kinetic) is conserved is expressed, in the absence of body forces, in the 
form (Landau & Lifshitz 1959; Batchelor 1967) 

- (PH--p)+-( (m,H+qi- -P , iu j )  a a = 0, 
at axi 

or, in the previously defined notation, 

a 
at 
- (pH - p )  + V - (mH) - m - y - TQ = 0. 

From the point of view of continuum fluid mechanics, this equation is the 
fundamental statement about energy conservation in a flow. As is well known, the 
entropy equation ( l c )  is a consequence of (18). Here it will be considered the other 
way around: given the sct of equations ( l ) ,  then (18) is not independent but can be 
treated as a corollary to that set. Any solution to the complete set (1) automatically 
satisfies (18). From this viewpoint it is of interest to examine the consequences of 
introducing the formal expansions (4) into (18). Substituting the expansions into the 
energy equation and equating coefficients of like powers of S to zero independently 
leads to a sequence of equations which express conservation of total energy at the nth 
order. For n = 0, 1,  2 these are 

V.(m,H,)-m,*wo-T,Q, = 0, ( 1 9 4  

( 19 b )  
a 
- (PH - P ) ~  + V. (m, Hl + m, H, )  - m,. w1 - ml * wo - T, Q1 - T Qo = 0, 
at 

a 
at - (PH -P)2 + v * (mo Hl + " 1  HI + m2 Ho) 

-m,.  y2 - m l .  y1 -m2-  yo - T,  Q, - Q1 - Qo = 0. (19c) 
Each of equations (19) can be viewed as being a corollary to  the corresponding nth- 
order systems (5), (6) and (7). What they actually express will be analysed in detail 
in the following paragraphs. 
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Consider (19a) ; it is equivalent to 

H , V . m , + m , . ( V H , - ~ o ) - q ) ~ o  = 0, 

( H a  - q so) v. m, + 111,. (Lo + To vs, -4, - yo)  + To so V - m , -  7; &, = 0. 

(Ha - T, $0) c, + mo* (Lo - Yo) + 7b(s, -&a) = 0, 

or (20) 

(21) 

Because mo-ro = pa u, * (5, x u,) = 0, equation (20) is 

in which the abbreviations defined in (9) have been introduced. In view of (9), it is 
scen that the energy equation a t  order 0 contains no new information; given any 
solution of the system (5), (19a) is simply an identity. 

Equation (196) can be handled similarly. First, note that 

(PH-P),  = (PI1 + $ 1 4  +PO u,.u1 = HOP, +PO T, 81 +ma. u, (22) 

after (12) has been used. Then (196) becomes, utilizing (5a) and (5b), 

H ,  -+ v - m, + 7;- a (Po s,) +m,. (z+ 8% V H ,  - w,)  (% ) at 

a 
W o -  %so) c,+ T,- (POSl+ P1 so)  + T, so V.m1 at 

+ma* (L,  + ~ V S ,  + T1 VS,-[,- v / , )  + m l *  (T, VsO-Co) -To &I - &o = 0. (23) 

Upon taking account of (5c) this is 

(Ha- T, so)  c, +ma* (L,  - w,)  + q(s, - &,) - mo-r, -m,.r, = 0. (24) 

Now, because m, = po ul+pluo and 6, = 5, x ul+el x u,, the vorticity terms in (24) 
can be shown to reduce to -pouo- (5,  x u,) -poul -  (5, x u,) = 0. Therefore, i t  follows 
again, when (9) are used, that the energy equation (19b) is simply an identity for any 
solution of the system (6). It is noted that this occurs, as it did for (19a), regardless 
of the presence of entropy and vorticity variations in the solutions of the systems (5) 
and (6). 

Finally, consider (19c). From (12) i t  follows that 

(PH-P) ,  = b e ) ,  + $0 4 +P1 U,.Ul  +h 4 +POUO'UZ 

Introduce the definition 

P: +'so u: +pl  u, ' u, +- P O T , S :  > E -- 
- 2p,c; ''Pa 

so that, after utilizing (5a), (5b) and (25), equation (19c) becomes 

aE2 aP a 
-+Ha at ($+ v. m2) + (Po s, + p1 8,) + m,. @+ V H ,  - v,) 
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or 

+ mo- (L,  + 7; Vs2 + Tl Vs1 + T, VS, - 6, - 12) + V .  (ml H I )  

-m1* 11+ m2* (T, Vso- 6,) - T, & 2 -  Ti &I- Tz Qo = 0. (27 1 
After use of ( 5 c ) ,  this can be written 

-+ (Ho - T, 80)  c2 + “0 * (L2 - 12) + G(S2 - Q2) + V *  (mi Hi) - “1 * 11 at 

+ Tl V .  (mo sl)  - To V .  ( m l ~ 1 )  - mo.62 - m2* 6 0 -  T1&1 = 0, (28) 

and in this case it is seen that (9) do not annihilate every term in the general energy 
equation for n = 2.  If it is noted that 6, = 5, x u2+e1 x u1 +g2 x u, and m, = pou2+ 
p1u1+p2uo, then it can be shown that the vorticity terms in (28) reduce to 
-po u, - (5,  x u,) -pl u1 - (5, x uo). Hence, after (9) are used, what remains in (28) is 

aE2 
- + V .  [mi(Hi - T, ~ 1 )  +mo Ti sil-mi. 11 - q Q1 at 

+ ~ l ~ l ~ V T , - ~ o ~ l ~ V T , - ~ o ~ o ~ ( ~ l  X U ~ ) - ~ ~ U , * ( < ~ X U ~ )  = 0.  (29) 

Reintroduction of the definitions of I and Q yields 

and 

in which, as usual, the subscript 1 denotes the first-order term of the corresponding 
quantity expanded according to (4). Equation (29) then assumes the form 

with E, given by (26), and with 
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Whenitisnoted thatH,-T,s, = h l + u o ~ u , - l ~ ~ l  =pl/po+uo-ulfrom (13),itisseen 
that the first term on the right-hand side of (33) is precisely the acoustic energy flux 
of (17). In addition, in the absence of first-order entropy fluctuations, E,  of (26) is the 
same as the acoustic energy density E,  of (16). Thus, for homentropic, irrotational 
ideal fluid flow, (32) reduces to (15). 

In fact, the result embodied in (32), (26), (33) and (34) is the most general energy 
corollary of its type applicable to  the system (6). J u s t  as for the various special cases 
discussed by earlier authors, it can be derived by straightforward algebraic 
manipulation of that system. To those who would argue that such a derivation is 
more dircct than the formal perturbation employed here, thc author would point out 
that the algebraic effort required to obtain the result in its full generality is actually 
about the same by either method. One advantage of the current approach, however, 
is that it provides general answers to  the questions posed early in this paper about 
the meaning of such corollaries. Equation (32) contains only first-order perturbation 
quantities, and yet, because of (28), it  is a complete, consistent representation of the 
principlc of total fluid energy conservation a t  order a2 ; the conservation law on total 
energy is affected by the solution of the second-order system (7)  only at orders a3 and 
higher, even in the most general of circumstances. 

Although the primary purpose for obtaining (32) here has been to illustrate its 
meaning relative to (18) and to  provide motivation for the generalization to  be 
developed later, this result itself is one which seems not to have appeared elsewhere. 
As a result, it merits some discussion, which will be kept relatively brief in view of 
current purposes. As is customary, the quantity E,  of (26) is defined here as the first- 
order disturbance energy density, and W, is the corresponding first-order disturbance 
energy flux vector. The source term D,, according to (32), then represents the rate per 
unit volume at  which first-order disturbance energy is being dissipated. Equation 
(32) indicates that this dissipation arises not only from thermoviscous effects but also 
from transfers of disturbance energy between the steady velocity field and the 
disturbance vorticity and between the steady vorticity and the disturbance velocity. 
In  addition, D, contains an effective thermal contribution associated with the first- 
order entropy field. The flux vector W, consists of (17) augmented by a contribution 
from the rate of work of viscous stresses and by an explicit heat flux term and an 
effective thermal component arising from the flux of first-order entropy. It is 
emphasized, however, that complexities introduced by the presence of the various 
denominators in (33) and (34) seem to preclude a strict physical interpretation of 
each separate term that ultimately appears in (32). For example, the viscous stress 
power term in W, is 

with similarly complicated expressions resulting from the six other such terms in (33) 
and (34). As for the disturbance energy density of (26), it is seen to include the usual 
' potential ' energy per unit volume resulting from reversible elastic compression, 
p;/2poc;, as well as the first-order measure of disturbance kinetic energy per unit 
volume and a contribution, discussed by Pierce (1981) for the case uo = 0, 
proportional to the square of the first-order entropy. 

Besides being of inherent value in leading to physical understanding of the 
mechanisms of energy transport associated with disturbances in moving, non- 
uniform media, (32) can be useful for identification of general conditions under which 
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known simpler results are valid. For example, (15) is known to hold for homentropic, 
irrotational ideal fluid flow. In  fact, for an ideal fluid, (26) and (33) reduce to (16) and 
(17) provided only that s1 vanishes, and D, = 0 in this case if < = 0. Thus, (15) is valid 
for irrotational ideal flow even in the presence of entropy gradients in the basic 
steady flow so long as first-order entropy fluctuations are absent. 

Another known result follows from (32) if one considers a Newtonian viscous fluid 
for which 

Here the customary Stokes' hypothesis has been invoked, and p is the dynamic 
viscosity. Let the heat flux be according to Fourier's law, qi = -KaT/axi, where K 
is the thermal conductivity, assumed constant here. If a quiescent basic state uo = 

0 is considered, it follows that Potj = 0 and that @jo = @jl = 0. Then (33) reduces to 

and (34) becomes 

" 
To D ,  = Sl m,.  VT, + Plij (VT,)2 - 3 -VTo.VTl + 2 or 

It is easily shown using (36) that if VT, = 0, (37) and (38) are precisely the expressions 
given by Pierce (1981, equations 10.2.5b, c),  who assumed a completely uniform 
ambient state. The current analysis provides the generalization of Pierce's viscous 
energy corollary to the case in which temperature (entropy) gradients are present in 
the stationary basic state. 

Equation (32) is also directly related to the acoustic result of Morfey (1971). 
Morfey was concerned with constructing an acoustic energy law having the density 
and flux given by (16) and (17) with p1 replaced by pl/c$ To accomplish this he split 
the velocity vector u into irrotational and solenoidal parts and included all 
thermoviscous terms and all terms containing the vortical velocity, vorticity and 
entropy fluctuations in a source term on the right-hand side of (15). If this process 
is applied to (32) it can be shown, after considerable algebra, that Morfey's result 
follows. In  general, however, viscous stress power and heat flux terms properly 
belong in an energy flux vector and, as Pierce (1981) indicates, the measure of 
disturbance energy density should include the st term of (26). In any event, the abovc 
approach is not pursued further here because the main objective is to develop, in the 
next section, an exact corollary valid even for a nonlinear disturbance theory in 
which the acoustic-vortical split of velocity cannot be unambiguously achieved. 

Finally, it is noted that Mohring (1973) followed quite a different approach to the 
derivation of an energy corollary for the lincar system (6). He considered the ideal 
fluid case and sought a conservation law in which the remaining terms involving 
entropy and vorticity in the source expression (34) were included on the left-hand 
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side of (32). This was accomplished, but a t  the expense of introducing an energy 
density and flux expressed in terms of Clebsch potentials, which are not uniquely 
defined. As a result, the density is not unique, and the flux is unique only on a time- 
averaged basis. While a source-free energy corollary would be preferable to one like 
(32), it appears that  Mohring’s ideal fluid corollary is practically useful mainly for 
studies of time-averaged energy transport. 

4. Exact energy corollary 
The formal approach taken in the preceding section has shown that, a t  the first 

three orders, the nth-order general equation assumes the form of a sum of certain 
multiples of basic steady flow quantitics with the continuity, linear momentum and 
entropy equations at order n as well as, for n = 2, terms constituting the first-order 
disturbance energy corollary, which involves only qn-l perturbation quantities. This 
suggests that i t  is of interest to  explore the possibility that this pattern repeats itself 
a t  all orders. What will be done here is to  write the exact energy equation (18)  and 
to subtract from it the same multiples of the exact equations (8) as occurred in nth- 
order form in (21), (24) and (28). Because the terms in (21) and (24) vanished 
identically, it can a t  least be expected that the new exact equation will be devoid of 
zero- and first-order terms when expanded according to the form (4). In  fact, as will 
be seen shortly, the new equation assumes the form of an exact energy corollary 
analogous to (32) whose leading-order representation under the scheme (4) is a t  O(S2) 
and is identical to (32). 

According to the procedure suggested above, the sum of ( H ,  - T, so) times equation 
( 8 a ) ,  T, times equation (8c ) ,  and the scalar product of m, with equation (8b )  are 
subtracted from the general energy equation (18 b) .  This yields 

a 
--[pH-p-p(H, - To so) -pT, s - m , . ~ ]  + V. (mH) - m *  w - TQ- ( H o -  To so) V-m 
at 

- T, V -  (ms) + To Q -  m,. [c+ V H  - TVs-  v ]  = 0, (39) 

which can be rearranged, using ( 5 ) ,  into 

Now consider the divergence term in (40) ; it can be rewritten as 

V - [ ( m  -mo) ( H - H , )  -mT,(s-so) + m, T ( s -  so) -m,H, + mo Ts,]. 

V.(m,H,)  = m,-v,+T,Q,,  

(41) 

From (5) (or l Y a ) ,  i t  follows that 

and, from (Fjr), that 
V.(m,Ts,)  = s ,m,~VT+TQ,,  

which allow (41) to be put in the form 

v . [(m - m,) ( H - H , )  - mT,(s - so) + m, I ’ ( S  - S o ) ]  

-mo* yo + so m,. VT+ (T- To) Q,. (42) 
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Substitution of this back into (40), and use of the fact that u, and p ,  are independent 
of t ,  then enables that result to be written as 

a 
-{P[H-H, - T,@- so)] - m,. (u- u,) - (P-Po)}  at 

+ V . { ( m  -mo) W - H ,  - T,(s-so)l+ m,(T- To) (s-so)}- (rn --no) * (v - vo) 
- (T- To) ( Q  - Q,) - rn,*5- rn.6, + (8 - s o )  rn . V T ,  - ( 5  -so) rn, . VT = 0. (43) 

Upon introducing the definitions of and Q, it is seen that 

i ap,, i wOi) 
( r n - r n , ) . ( y / - ~ , )  = (mj-m ) ----- 

O j  b axi Po axi 

and that 

@ @ v - q  v - q ,  
(T-T,)(Q-Q&,) = (T-To) --A_- 

( T  T,  T . 7 )  

Then, after substituting (44) and (45) into (43) and noting the fact that m.[= 
pus (5  x u)  = 0 and rn0.6, = 0, it follows that (43) assumes the form 

in which 
E = p[H-H, - T, (s -s0 ) ]  -rn, - (u-u0) - (p-p,)  ; (47) 

w, = (%-moJ [ H - H ,  - To(s- so)] + m o p  T,) (s-so) 

Before entering into any discussion of (46)-(49), which are the major result of the 
current paper, it  is noted that thc source termed defined by (49) is expressed above 
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in a form which allows easy term-by-term comparison with (34). It can be written in 
somewhat simpler form. The terms containing the heat flux vector are 

- % T b( T - To) - ( 1  - 2) V T ]  + - [.( T - T,) - (6 - 1) vTo] 

= -(T-$).(T-T), Toq Tq 
V T  WTo 

and the contribution of the viscous stress components to D is equivalent to 

Use of (50) and (51) in (49) then leads to an alternative expression for the source term 
of the form 

D = (m - m,) - [< x u - g o  x U, + (S -so)  VT,] - ( s - s ~ )  mo.V(T-T,) 

The above result, (46)-(49), is, as noted, the energy corollary which is the primary 
goal of the current work. It is emphasized that it is an exact relation satisfied by 
arbitrary disturbances to a completely general steady viscous flow. No approxi- 
mations or expansions of the fluid quantities have been used in deriving i t ;  most 
importantly, it  has not been assumed that the disturbance quantities are governed 
by the linear system (6). The quantity E will be termed here the disturbance energy 
density, with W the corresponding disturbance energy flux vector. The relationship 
of the disturbance energy quantities to their first-order counterparts of (32) and to 
the total energy density and flux of (18) will be discussed in the following section. 

5. Discussion and simple application 
Clearly, the definition of a pair of quantities like E and W so that they satisfy a 

conservation equation of the form (46) is, to a large extent, arbitrary. For example, 
any linear combination of conservation equations having consistent dimensions is 
itself another one. Equation (46), however, has a particular significance among other 
such equations that could be derived because expansion of E ,  Wand D according to 
(4) yields no terms of O(1) or O(S) and yields S2 coefficients which contain only first- 
order perturbation quantities ql. This property of the corollary (46) is what would 
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render i t  useful regardless of the particular first-order expressions that constitute its 
6, coefficients, but its construction in view of the results of $3  ensures in addition that 
they are the same as in (26), (33) and (34). Therefore, a t  leading order in the 
perturbation scheme (4), equation (46) is precisely the first-order corollary of (32). 
The quantities E and W thus provide an answer to the fundamental question posed 
in the final paragraph of 5 1 of this paper in that they represent exact fluid dynamic 
quantities which are approximated at lowest order in thc scheme (4) by the various 
commonly employed measures of energy density and flux. In homentropic ideal flow, 
for example, the disturbance energy flux is simply equal to the product of the 
disturbance in the mass flux and the disturbance in the stagnation enthalpy, and this 
quantity is approximated in linearized acoustic theory by the acoustic energy flux 
(17) .  

Explicit demonstration of the properties mentioned above is achieved by 
expanding (47)-(49) according to (4). From (47), 

E = p(e + - h, - tui) +pa -pT,(s - so) -po uo- (u - uo),  

and, by construction, E, = 0. Its first-order representation is 

( P ) l  +iPl 4 +PO UO.Ul -P1(ho + t 4 )  - Po T, 81 - P o  uo* u,, 

and, because of (12), this also vanishes identically. At order S2 E is 

(P), + b o  u: +PO U o - U ,  +P1 uo .4  +iP2 4 
-Pn(ho +%) -P1 TI 81 -Po T, 8 2  - P o  uo. u,, 

which, after (12) is used for (pe),, is found to reduce exactly to E, as given by (26). 
Hence, E = S2E, + . . . when the perturbation scheme (4) is employed. 

The flux Wand the source expression D exhibit thc same bchaviour. In this case, 
because they are written in (48) and (49) entirely in terms of products of 
disturbances, it is obvious that W,, W,, Do and D ,  all vanish. For the same reason, 
their representations at order S2 will contain only products of first-order disturbance 
quantities, and it can be seen by direct comparison of (48) and (33) and of (49) and 
(34) that  they will be exactly W, and D,. It follows, thcrefore, that  the leading-order 
representation of the exact corollary (46) under the scheme (4) is precisely (32). 

It is important to note that, as is the case in all previous analyses of the current 
type, neither E nor Ware  equal to the changes in the respective total fluid energy 
density EToT and flux W,,, owing to the existence of the disturbance. For example, 
consider the ideal fluid case; from (18), A W,,, = mH-mo Ho so that 

W = A W,,, - (m - m,) [ H -  To(s - so)] - mo[H-Ha - (T -  To) (s - so)]. (53) 

The additional terms subtracted in (53) remove from A W,,, all terms which are 
linear in the disturbance quantities. This is the reason why the sccond-order 
representation of Win (33) contains only first-ordcr perturbation quantities. Similar 
remarks apply to E .  It does not seem to be possible to give a simple physical 
interpretation of all of the additional subtracted tcrms, but it can be seen that they 
account €or the portion of total energy flux not strictly associated with the 
mechanical and thermal processes of propagation of the disturbance through the 
basic flow. For example, thc subtracted terms in (53) which contain the pressure are 
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where QT stands for terms quadratic in the disturbance quantities p - p , ,  p-po and 
u- uo. This indicates that  the pressure contribution subtracted from A WToT in (53) 
includes the rate of work done by the ambient pressure against the disturbance 
velocity and its counterpart, the rate of work done by the disturbance pressure 
against the ambient velocity. Similarly, the extra terms also include the simple 
convection of ambient total energy by the disturbance velocity and of disturbance 
total energy by the ambient velocity. 

In  view of its completely general form, (46) is probably of most value in 
conjunction with special cases for which some of its terms are absent. As indicated 
earlier, the author has applied a highly specialized version of (46) in a study of 
nonlinear quasi-one-dimensional waves propagating through a near-sonic throat 
flow. Details of that work confirm the fact that  the general energy corollary leads to  
a consistent accounting for the transport of disturbance energy in a situation where 
linearized theory is inadequate to describe the disturbance field. Here, as an example 
of the utility of (46), a much simpler nonlinear problem will be discussed, and that 
only in enough detail to illustrate the application of the corollary. 

Consider plane wave propagation in an ideal gas. As is well known, even in the 
absence of explicit thermoviscous effects, shock waves which develop in such fields 
give rise to  energy losses which attenuate waves as they travel. This is a situation in 
which (46) with $--so =+ 0 can provide a convenient means of accounting for the losses. 
The ‘piston’ problem, in which data are specified on x = 0 and plane waves move out 
into x > 0, has been analysed in detail by Whitham (1974) for the case of finite- 
amplitude disturbances travelling into a uniform, quiescent state. So long as the data 
are such as to generate sufficiently weak shocks, a first approximate solution for the 
disturbance field is obtained by assuming that the flow is homentropic. In  this case 
equations (1) are equivalent to 

R $ + ( u f c ) R $  = 0 ,  (54) 

in which R’ are the Riemann invariants, 

2c 
R * = -  + u, y-1- 

(55)  

and the subscript notation for derivatives is employed. The pressure and density in 
the flow are determined from 

where y is the specific heat ratio and the subscript 0 again denotes the ambient state. 
For the current purposes, however, a somewhat different problem will be 

considered. Assume that the disturbance propagates upstream into a gas which is in 
uniform motion a t  speed U in the negativc x-direction. Define a dimensionless 
velocity perturbation y and sound speed perturbation u according to 

u = U( - 1 +/A), c = co(l  +u), (57% b )  

and assume that the basic steady flow Mach number M = U/co is near unity. This 
introduces a small parameter B = 1 - M  into the problem, and i t  becomes amenable 
to a formal perturbation analysis which describes waves of small amplitude 
propagating into an oncoming near-sonic flow. The details of this analysis will be 
omitted here, but it is noted that such an approach is of value because it leads to  an 
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analytical determination of a number of results associated with the development of 
shocks in the disturbance quantities and with the ultimate non-simple wave nature 
and non-isentropy of the solution. The problem will be discussed in detail in a 
subsequent paper. 

In order to avoid extensive algebra here, however, i t  will again be anticipated that 
the leading approximation will be homentropic so that (54) and (55) are sufficient. 
After using (57a, b ) ,  they can be written 

(58) R$ + [M( - 1 + p )  f ( 1  +a)]Rz  = 0, 

1 R' =co[y- l ( l+a)kM(- l+p)  2 , 
(59) 

in which T = cot. If it is further assumed that the appropriate solution of (58) is a 
simple wave, then R- has the constant value 2c0/(y- 1 )  + U so that 

To solve (61) for E 4 1 requires no involved perturbation technique; one simply 
notes that if p and pT are O(e)  then ps is O(l/e) uniformly in x. Thus it is sufficient 
to  introduce a 'fast ' spatial variable X = x / e  and to seek p = f ( X ,  T )  as a regular 
perturbation in powers of e. Accordingly, let 

p(x,  T ;  8 )  = ep1(X, T )  + E2pz(X, T )  + . . . , (62) 

which, upon substitution into (61), yields a sequence of equations governing the p,. 
The leading term satisfies 

p1,+[1+i(Y+~)lUlIplx = 0. (63) 

Let p be specified at  x = O:p(O, T ; e )  = E$(T).  Then the solution of equation (63) 
satisfies pl(O,t) = $(T)  and it can be written in parametric form as 

p,(X, T )  = $5(7); x = [1 +&Y+ 1 )  $(7)1 (T-T),  (64) 

where the characteristic parameter 7 ( X ,  T )  is chosen so that ~ ( 0 ,  T )  = T.  In fact, cp1 
is the exact continuous solution of (61) for arbitrary E .  When shocks occur, however, 
the solution is not a simple wave beyond O ( e ) ,  and p, =+ 0 for n > 1. 

Further discussion of the above solution and its extension to higher order will not 
be presented here ; the aim is simply to illustrate the application of the corollary (46) 
to the problem. For this case H = c2/(y- 1 )  +$', and the single component of the 
disturbance energy flux vector (48) is 

To obtain the consistent representation of W requires only that it be expanded 
according to the scheme (62). The second factor in (65) is written as 

Then expansion of (60) results in 
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which, when substituted into the above factor, yields 

2 - c ;  -+i(u2 - V )  = E:"C;l-Jl +icy + 1) p;] + . . . . 
Y-1 

Similarly, the first factor in W is 

poco( l  -6)  [( 1 +u)2 '7 -1( -  1 + p )  + 11 

pu + Po u = E 2 p o  c o b l  + icy + 1) p;] + . . . . 
W = c4pO c;(p1 + a(y + 1) p;)2 + O(s5) 

after (56a) is used. Expansion of this according to (62) and (66) then gives 

Hence it follows that 

for the current example, where p1 is given by (64). 
Now consider the disturbance energy density ; for the example here it is 

cz - co" 
E = p (-+i(uZ- V)) +PO U(U + U )  - ( p  -Po). 

If this is written in terms of u, p and E it can be shown, after some algebra,. that it 
has the form 

E = 1)p3+0(e4). (71) 

If the expressions on the right-hand sides of (69) and (71) are written as s4W4 and 
e3E,, respectively, it follows that the energy corollary for the current example (D = 
0 in this case) is, a t  leading order, 

It is easily seen that this conservation law also follows directly if (63) is multiplied 
by 2p1[l +icy+ l)pl], which affirms the correctness of the result but does not shed 
much light on its physical meaning or on its relationship with the general energy 
equation. 

Several points are worth noting in connection with (72). First, the leading terms 
in E and W contain only first-order perturbation quantities, as expected on the basis 
of the construction of the general corollary (46). However, this occurs here even 
though those terms do not appear until orders .e3 and e4 in the singular perturbation 
scheme (62). Direct determination of the consistent first approximate form of (18) in 
this case would have required expansion of E,,, and W,,, up to orders c3 and c4, 
respectively, and utilization of the corresponding expansions of (8) up to the same 
orders in the singular scheme (62). This is an algebraic task of considerable 
magnitude, and it is avoided completely by the simple calculation of the leading 
approximations to (65) and (70). Second, the disturbance energy flux is one order 
smaller than the energy density. This is also expected, owing to the fact that spatial 
derivatives of W are one order larger than W itself in this case. Perhaps most 
important from a physical point of view is the conclusion which follows from the 
above that an O(s)  disturbance introduced into an oncoming flow a t  M = 1 - 6  

imparts a disturbance energy to the flow whose density is only O(a3) and whose flux 
is only O(s4). Of course, for a $xed disturbance level and for M sufficiently greater 
than unity, no disturbance at all can be imparted to the flow. The result here 
indicates that this process of supersonic blocking takes place in a continuous manner 
for increasing M and begins when M is well below unity. 
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